2009年度日本政府（文部科学省）奨学金留学生選考試験

QUALIFYING EXAMINATION FOR APPLICANTS FOR JAPANESE GOVERNMENT (MONBUKAGAKUSHO) SCHOLARSHIPS 2009

学科試験　問題

EXAMINATION QUESTIONS

（学部留学生）

UNDERGRADUATE STUDENTS

数学 (B)

MATHEMATICS (B)

注意　☆試験時間は60分。

PLEASE NOTE: THE TEST PERIOD IS 60 MINUTES.
1 Fill in the blanks with the correct numbers.

(1) Let \(\omega \) be a solution of the equation \(x^2 + x + 1 = 0 \).

Then \(\omega^{10} + \omega^5 + 3 = \square \).

(2) The constant term of \(\left(2x^4 + \frac{1}{x^3}\right)^7 \) is \(\square \).

(3) The solution of the inequality \(-x < x^2 < 2x + 1\) is \(\square < x < \square \).

(4) \(\int_0^2 x (x - 1) \, dx = \square \).

(5) If \(\frac{1}{1 - \sin \theta} + \frac{1}{1 + \sin \theta} = 6 \) and \(0 < \theta < \frac{\pi}{2} \), then \(\tan \theta = \square \).
Denote by D the domain

$$\{(x, y) \mid x \geq 0, y \geq 0\}.$$

Assume that a circle C contained in D touches the parabola $y = \frac{1}{2} x^2$ at the point $(2, 2)$ and also touches the x-axis. Find the radius of C.
3 Let \(A, B, C \) be three points on a plane and \(O \) be the origin point on this plane.

Put \(\vec{a} = \overrightarrow{OA}, \vec{b} = \overrightarrow{OB}, \) and \(\vec{c} = \overrightarrow{OC}. \) \(P \) is a point inside the triangle \(ABC. \)

Suppose that the ratio of the areas of \(\triangle PAB, \triangle PBC \) and \(\triangle PCA \) is \(2 : 3 : 5. \)

(1) The straight line \(BP \) intersects the side \(AC \) at the point \(Q. \)

Find \(AQ : QC. \)

(2) Express \(\vec{OP} \) in terms of \(\vec{a}, \vec{b}, \vec{c}. \)