2009年度日本政府（文部科学省）奨学金留学生選考試験

QUALIFYING EXAMINATION FOR APPLICANTS FOR JAPANESE GOVERNMENT (MONBUKAGAKUSHO) SCHOLARSHIPS 2009

学科試験　問題

EXAMINATION QUESTIONS

（高等専門学校留学生）

COLLEGE OF TECHNOLOGY STUDENTS

数学

MATHEMATICS

注意　☆試験時間は60分。

PLEASE NOTE : THE TEST PERIOD IS 60 MINUTES.
1. Fill in the blanks with correct numbers or expressions.

1) Solve the equation $16^x - 4^x - 2 = 0$.

2) Solve the equation $\sin x + 2 \cos^2 x = 1$, $(0 \leq x < 2\pi)$.

3) Solve the inequality $x + \frac{1}{x} < \frac{1}{2}(7 - x)$.

4) Solve the inequality $\log_2(x+2) < 2$.

5) A number sequence $\{a_n\}$, ($n = 1, 2, 3, \cdots$) satisfies the following conditions. Express a_n as a function of n.

$$3a_{n+1} = 2a_n + 1, \quad (n = 1, 2, 3, \cdots), \quad a_1 = 2.$$

6) Let $f(x) = \cos x$ and $g(x) = \sin x$. Calculate

$$\lim_{h \to 0} \frac{f(x-2h) - f(x+h)}{g(x+3h) - g(x-h)}$$
7) Differentiate the function \(e^{x \sin x} \).

8) Calculate \(\int_{1/e}^{e} \log_x x \, dx \).

9) In a single toss of two dice, find the probability that the product of the two numbers is greater than their sum.

10) Find the real value of \(a \) such that the coefficient of \(x^n \) is \(\frac{21}{2} \) in the expansion of \(\left(ax^2 - \frac{1}{ax}\right)^9 \).

11) Let A and B be the points (2,0,1) and (0,1,2), respectively. Find the point P on the line through A and B such that \(\overrightarrow{OP} \perp \overrightarrow{AB} \).

12) Let \(\alpha \) and \(\beta \) be non-real roots of the equation \(x^3 = 8 \). Find the value of \(\alpha^2 + \beta^2 \).
2) Let $A = \begin{pmatrix} 3 & 1 \\ 2 & 4 \end{pmatrix}$, $X = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $Y = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $Z = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$.

1) Find the value of a which satisfies $AX = aX$.

2) Find the value of b which satisfies $AY = bY$.

3) Find the values of c and d which satisfy $Z = cX + dY$.

4) Calculate A^*Z.
Let k be a positive constant, $f(x) = |x^2 - k^2|$ and $I(k) = \int_{-1}^{1} f(x) \, dx$.

1) Sketch the graph of the function $y = f(x)$.

2) Suppose $k < 1$. Express $I(k)$ as a function of k.

3) Suppose $k > 1$. Express $I(k)$ as a function of k.

4) Find the minimum value of $I(k)$ and the value of k which minimizes $I(k)$.